
www.sentron.nl

Sentron

R&D evaluation pH kit Technical Guide

Contents

1.	Description	2
2.	Specifications	3
3	Electrical connections	5
3.1	Analog front-end module	5
3.2	AD Converter module	6
3.3	USB Interface module	7
4	Calibration	8
5	Data communication	8
5.1	Protocol	8
5.2	Examples	9
5.2.1	Performing a single point calibration	9
5.2.2	Performing a multi-point calibration	10
5.2.3	Retrieving the pH signal	11
5.2.4	Retrieving the temperature signal	11
5.2.5	Retrieving the slope values	12
5.3	ASCII table Contact information	13

1. Description

The complete kit includes the following components:

4 pH kit ISFET pH sensor modules
4 pH kit reference electrode modules
1 pH kit Analog Front-end module
1 pH kit AD Converter module

Sentron offers a glass-free modular R&D evaluation pH kit designed specifically for development and testing purposes. With this pH kit, development engineers and researchers have a large degree of flexibility in how they integrate our proprietary ISFET pH sensor into their applications or experimental set-ups. Due to the modular design, the functionality can be expanded as required and components can be replaced individually. The ISFET pH sensor module, the reference electrode module and the Analog Front-end module are always needed as a basis for pH measurement. Thanks to the small size of the ISFET pH sensor and reference electrode it can be used to measure small volumes or to develop applications with small form factors. The Analog Front-end module has an uncalibrated analog pH output signal with a voltage output 0 - 3.3 V of \sim 52 mV / pH and pH 7 between 500 mV and 1800 mV. The PT1000 RDT temperature sensor in the ISFET pH sensor module is wired directly to the Analog Front-end module output. The reference electrode module also connects to the Analog Front-end module and either the standard (included) reference electrode with porous PTFE diaphragm can be used or a suitable custom reference electrode can be attached.

The AD Converter module can be attached to the Analog Front-end module. This extension module with microprocessor, AD Converter and galvanic isolation makes it well suited for use in embedded applications. The communication with the AD Converter is based on a serial RS232 interface with a TTL level. Using a standard serial interface it is possible to perform calibrations and read pH and temperature values. Application of a temperature correction algorithm to the pH signal is performed directly by the microcontroller of the AD Converter module. The galvanic isolation provides an extra safety barrier and prevents ground loops. With the USB Interface module, which connects to the AD Converter module, it is possible to request measured pH and temperature values from a laptop or PC with a USB port. The USB Interface module, with appropriate user developed software, allows the R&D evaluation pH kit to be used for applications that require direct connection to a PC, such as real time monitoring of pH values in an experiment or process.

The 4 hours of support can be used to get started or to resolve issues you are facing during the experiments. Do not hesitate to contact our support department for help on this ISFET pH sensor platform in your R&D: support@sentron.nl.

Sentron

Sentron

1 pH kit USB Interface module Buffer set (pH 4, 7, 10 and rinsing fluid) 4 Hours of support

Complete set (R&D pH evalation kit)	ISFET pH sensor module	Reference electrode module	Analog Front-end module	AD Converter module	USB Interface module	Physical properties	ISFET pH sensor module
A120-200	A120-001	A120-002	A120-003	A120-004	A120-005		^ []
		\bigcirc					A ↑ B ↓_↓
General description	Module contains ISFET pH sensor chip as well as a PT1000	Gel-filled reference to be used with the ISFET pH sensor	Module provides an analog voltage output pH signal when the	Optional Analog- Digital Converter module that	Optional USB Interface module to be attached to the AD	Dimensions	.C.
	temperature sensor. To be used with the	module or pH blunt needle module, and	pH-kit ISFET pH sensor module and	provides RS232 serial output when	Converter module. It enables pH values to	Total length (A)	46 mm (1.81")
	pH-kit reference electrode and the	the pH-kit Analog Front-end module.	the pH-kit reference electrode are	attached to the pH-kit Analog	be read directly by a PC with a USB port.	Length part (B)	15 mm (0.59")
	pH-kit Analog Front-end module.	from chambdale.	attached.	Front-end module.	r e mara oob pora	Diameter/Width (C)	3 mm (0.12")
	front cha module.					Diameter (D)	
рН	ISFET pH sensor module	Reference electrode module	Analog Front-end module	AD Converter module	USB Interface module	Materials	
Sensor	Glass-free Ion Sensitive Field Effect					Barrel	PEEK
	Transistor (ISFET) semi- conductor					PCB	
Accuracy	+/- 0.01 pH					Weight	
Range	pH 0.0014.00					Weight	0.15 gr. (0.005 oz
Drift maximal (in pH7 @ 25°C)	0.14 pH/day					Operation / storage	
Drift typical (in pH7 @ 25°C)	0.05 pH/day and lower					Temperature	080°C (32176°
Reference system	ISFET pH sensor module	Reference electrode module	Analog Front-end module	AD Converter module	USB Interface module	Relative Humidity	30 %80 %
Elektrode		Ag/AgCl					
Туре		Non-flow				Electrical properties	ISFET pH sensor module
Diafragm		Porous PTFE				Power	
Reference solution		Gelled KCI				Supply input	
						Consumption typical	100 nA

Temperature	ISFET pH sensor module	Reference electrode module	Analog Front-end module	AD Converter module	USB Interface module
Sensor	PT1000				
Accuracy	+/- 0.5°C (0.9°F)				
Range	080°C (32176°F)				

Weight		
Weight	0.15 gr. (0.005 oz)	1.29 gr. (0.046 oz)
Operation / storage		
Temperature	080°C (32176°F)	080°C (32176°F)
Relative Humidity	30 %80 %	30 %80 %
Electrical properties	ISFET pH sensor module	Reference electrode module
Power		
Supply input		
Consumption typical	100 nA	
Comunication		
Sampling frequency		
Baud rate		
Voltage Level		

6p FFC 0.5 mm pitch

Connector type(s)

3

1p receptacle

Analog Front-end module	AD Converter module	USB Interface module
	50.5 (0.0.4%)	
45 mm (1.77")	59.5 mm (2.34")	1,860 mm (73.2")
40 mm (1.57")	54.5 mm (2.15")	4.5 mm (0.18")
15.5 mm (0.61")	15.5 mm (0.61")	10 mm (0.39")
FR4	FR4	FR4

3.18 gr. (0.112 oz)

vЦ С

350 mm (13.8") 30 mm (1.18") 3 mm (0.12")

PEEK

0...80°C (32...176°F) 30 %...80 %

Analog Front-end module

4.69 gr. (0.165 oz)

0...80°C (32...176°F) 30 %...80 %

USB Interface module

78.4 gr. (2.77 oz)

0...80°C (32...176°F)

30 %...80 %

3.3 VDC +/-100 mV 8 mA @ 3.3 V

5 VDC +/-100 mV 13 mA @ 5V

AD Converter module

3 Hz

115k2 8N1

5V

6p FFC 0.5 mm pitch

6p header 2.54 mm pitch

6p receptacle 2.54 mm pitch

4p header 2.54 mm pitch

5 VDC +/-100 mV 2.5 mA @ 5 V

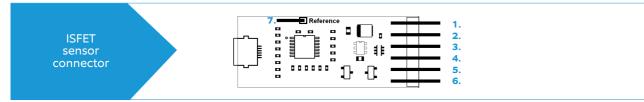
> 3 Hz 115k2 8N1

> > 5V

4p header 2.54 mm pitch

USB A header

3. Electrical connections

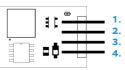

The diagram below illustrates how the components of the pH-kit are connected together. The modules will only function when connected in this order.

- 1. ISFET pH sensor + reference electrode
- 2. Analog Front-end
- **3.** AD Converter (Optional)
- **4.** USB Interface (Optional)
- NB Numbers 1 and 2 are always needed to conduct pH measurements with the pH kit. Numbers 3 and 4 are optional.

3.1 Analog front-end module

The ISFET pH sensor is connected to the Analog Front-End module through an FFC connector. There are also 7 pin connections on the module. One pin (Pin 7) is for connection of the reference electrode. The remaining 6 serve as output pins for the Analog front-end module. They are described below:

Pin 1. pH signal out	~52 mV/pH. pH 7 between 500 and 1800 mV
Pin 2. +3V3 Power	+3V3 DC power power input +/- 100mV
Pin 3. AGND	Analog Ground
Pin 4. PT1000	Directly wired to the PT1000
Pin 5. PT1000	Directly wired to the PT1000
Pin 6. N.C.	Not used
Pin 7. Reference	External reference electrode connection


Sentron

The 6 pin connector of the Analog Front-end module can be attached directly to the AD Converter module. The AD Converter module has 4 output pins, which are described below:

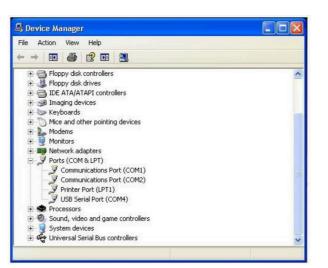
Analog front-end connector	
Pin 1. +5V	+5V DC power input +/- 1
Pin 2. RxD	Data input, TTL 5V level, 1
Pin 3. TxD	Data output, TTL 5V level,
Pin 4. GND	Digital GND
 The AD Conversion and outputs. 	erter module contains 1.5kV galv

Sentron

- 100mV
- 115k2,8N1
- l, 115k2, 8N1

Ivanic insulation between inputs

3.3 USB Interface module


The 4 pin connector of the AD Converter module can be attached directly to the USB Interface module. The red wire at position 1 of the AD Converter module; hence the black wire at position 4 of the AD Converter module.

The USB interface provides a USB A connection to a computer. It is possible to connect multiple USB interface modules to one PC, up to the current limit of your USB ports.

USB Driver Installation:

Normally Windows will recognize the USB interface as a USB to COM port converter. Windows will install the driver automatically or download the driver from the internet. In some cases the driver needs to be installed manually. The latest drivers can be downloaded from the FTDI website (http://www.ftdichip.com/Drivers/VCP.htm). When Windows has installed the driver properly it will assign a COM port number to the USB Interface. Through this port number the communication can be established. Look up at your device manager to find out the assigned port number. The figure below shows an example that Windows has assigned COM4 to the connected USB interface.

4. Calibration

It is always necessary to calibrate an ISFET pH sensor before use. During prolonged use the sensor may need to recalibrated at intervals. The frequency of recalibration is dependent on the conditions the sensor is subjected to and it is recommended to test the calibration at the end of a measurement run to confirm the calibration is still accurate. To perform a calibration place the ISFET pH sensor in the right buffer solution and communicate according the protocol of chapter 5.1.

5. Data communication

Before connecting and powering up the modules in your embedded environment or to the computer make sure that all the necessary modules are connected to each other and correct baud rate of 115k2 8N1 is set. See chapter 3 for power and data pins on the AD converter module when the USB Interface module is not connected and the communication is directly to the AD converter.

5.1 Protocol

A command is sent to the device in the form of ASCII characters, and the return string is received as a series of bytes representing 6-bit binary decimals. The return bytes will need to be decoded into a measurement value through a calculation. The method of decoding is shown in the table below.

Function	Send command	Re	ceive b	oytes fro	om AD	Conve	rter o	or US	B Inte	rface	€					Decode calculation. Multiply or add decimal	units
	(decimal bytes)					[Decir	nal b <u>i</u>	∕tes r	eturr	٦ I					byte position value.	
Retrieve pH value	57 57 57 33 13	ABCDEFGHIJK 013 010		B C byte byt	D ¹ te 000	_		G ¹ 000			J 013					A*4096+B*64+C	0.001 pH
Retrieve temperature	55 55 55 33 13	ABCDEFG 013 010		B C ¹ byte 00	~	_	F 013	-								A*64+B	0.1 °F
Start calibration	67 76 82 33 13	082 013 013															
Calibration pH 2	1 1 1 33 13	001 013 010 ²															
Calibration pH 4	1 1 2 33 13	002 013 010 ²															
Calibration pH 7	1 1 3 33 13	003 013 010 ²															
Calibration pH 10	1 1 4 33 13	004 013 010 ²															
Calibration pH 12	1 1 5 33 13	005 013 010 ²															
End Calibration ³	81 73 84 33 13	084 013 010															
	48 48 48 33 13	ABCDEFGHIJKLMN 013 010		B C		Е	F	G ⁴	Н	1	J ⁴	K	L	М	Ν	Slope pH 2-4 = B*64+C	0.1%
Retrieve slope					002	byte b										Slope pH 4-7 = E*64+F	0.1%
neurove siope								003	byte	byte						Slope pH 7-10 = H*64+I	0.1%
											004	byte	byte	013	010	Slope pH 10-12 = K*64+L	0.1%
1. Dummy b	ytes																

- 2. Response time is depending on signal stability, maximum at 120 seconds
- 3. Use function after desired number of calibration points is achieved
- **4.** Separation bytes

Sentron

Sentron

5.2.2 Examples

Below some communication examples on the various protocol functions are presented to illustrate communication with the AD Converter module and the USB Interface module.

5.2.1 Performing a single point calibration

pH7 calibration sequence:

- Rinse the probe with deionized water.
- Place ISFET pH sensor (blinking part at the module) and reference (white diaphragm of the module) in the calibration pH7 buffer solution. Initiate the calibration process by sending the Start Calibration command: CLR!<CR>
- Wait for the AD Converter or USB interface module to acknowledge, receive: 082 013 010

The AD converter or USB interface module is now ready to receive the calibration pH 7 command...

• Initiate the pH7 calibration by sending the calibration pH 7 command: 113!<CR>

Allow some time for the module to stabilize (this may take up to 2 minutes maximum)...

- Wait for the module to stabilize, receive bytes: 003 013 010
- End the calibration process, send: QIT!<CR>
- Wait for the module to confirm calibration end, receive: 084 013 010

Rinse the ISFET sensor and reference electrode with de-mineralized water...

The calibration is completed.

For performing a pH 2, 4, 10 or 12 calibration, repeat the sequence and use the appropriate calibration command bytes. See chapter 5.1 for the command bytes of each pH buffer solution.

5.2.2 Performing a multi-point calibration

To rule out erroneous multi-point calibrations, the calibration can only take place for an increasing or decreasing pH sequence.

Multi-point calibration sequence:

- For example a calibration in pH 4 7 10 buffer.
- Rinse the probe with deionized water.
- Place ISFET sensor and reference electrode in the first calibration buffer solution. In this case pH4 buffer.
- Initiate the calibration process by sending the Start Calibration command: CLR!<CR>
- Wait for the AD Converter or USB interface module to acknowledge, receive: 082 013 010

The AD converter or USB interface module is now ready to receive the first calibration command bytes of the buffer sequence...

• Initiate the pH4 calibration by sending the calibration pH 4 command: 112!<CR>

Allow some time for the module to stabilize (this may take up to 2 minutes maximum)... • Wait for the module to stabilize, receive bytes: 002 013 010

Rinse the probe with deionized water.

Place ISFET sensor and reference in the next calibration buffer solution, pH 7. • Initiate the pH7 calibration by sending the calibration pH 7 command bytes: 113!<CR>

Allow some time for the module to stabilize (this may take up to 2 minutes maximum)... • Wait for the module to stabilize, receive bytes: 003 013 010

Rinse the probe with deionized water.

Place ISFET sensor and reference electrode in the next calibration buffer solution, pH 10. Initiate the pH10 calibration by sending the calibration pH 10 command bytes: 114!<CR>

Allow some time for the module to stabilize (this may take up to 2 minutes maximum)... • Wait for the module to stabilize, receive bytes: 004 013 010

When performing even more calibration points, repeat this part for each extra desired point. ***

End the calibration process, send: QIT!<CR>

• Wait for the module to confirm calibration end, receive: 084 013 010

The calibration is completed.

Sentron

Sentron

Send the "end calibration command bytes" just once after the last performed calibration point.

5.2.3 Retrieving the pH signal

After a single or multipoint calibration the AD Converter module the pH value can be read out. Retrieve pH value:

- Send the command bytes: 999!<CR>
- Wait for the module to return the pH value, receive bytes: ABCDEFGHIJK

Data ABCDEFGHIJK marks the byte position. Values in bytes are needed for decoding.

Byte position	А	В	С	D	Е	F	G	Н	- I	J	K
Byte value	byte	byte	byte	000	000	000	000	000	000	013	010

Decode received sequence if e.g.:

Byte position	А	В	С	D	Е	F	G	Н	- I	J	К
Received bytes	001	023	027	000	00	000	000	000	000	013	010

Protocol:

- A = 001
- B = 023
- C = 027

- DEFGHIJK = n/a
- A*4096 + B *64 + C = 1*4096 + 23*64 + 27 = 5595
- pH value = 5.595

5.2.4 Retrieving the temperature signal

Retrieve temperature value

- Send the command bytes: 777!<CR>
- Wait for the module to return the pH value, receive bytes: ABCDEFG

Data ABCDEFG marks the byte position. Values in bytes are needed for decoding.

Byte position	А	В	С	D	Е	F	G
Byte value	byte	byte	000	000	255	013	010
Decode received sequ	Jence	if e.g	.:				
Byte position	А	В	С	D	Е	F	G
Received bytes	012	023	000	000	255	013	010

Protocol:

- A = 012
- B = 023
- CDEFG = n/a

- A*64 + B = 12*64 + 23 = 791
- Temperature value = 79.1 °F

5.2.5 Retrieving the slope values

A slope can only be calculated between two calibration points. When retrieving a slope after only a single point calibration the returned values will represent 0%. Normal slopes between two consecutive pH buffer solutions should be between 105% – 95%. Slopes outside these values, can indicate a polluted or aging ISFET pH sensor / reference electrode. Although calibrations and measurements can be performed the measured values may be less accurate. In this case, if cleaning the pH sensor / reference electrode does not resolve the slope issue be sure to replace the ISFET pH sensor and/or reference electrode. These can be purchased at www.sentron.nl/shop.

Retrieve slope value:

- Send the command bytes: 000!<CR>
- Wait for the module to return the slope values, receive bytes: ABCDEFGHIJKLMN

Data ABCDEFGHIJKLMN marks the byte position. Values in bytes are needed for decoding.

Byte position	А	В	С	D	E	F	G	Н	1	J	K	L	М	Ν
Byte value	001	byte	byte	002	byte	byte	003	byte	byte	004	byte	byte	013	010
Decode received sequ	uence	e if e.g	.:											
Byte position	А	В	С	D	E	F	G	Н	I.	J	К	L	М	Ν
Received bytes	001	000	000	002	015	052	003	000	000	004	000	000	013	010
Slope positions:														
		Proto	ocol			Decc	de			Resu	lt			
slope between pH 2 and pH 4		B*64	I+C			000*64	+000			0%				
slope between pH 4 and pH 7		E*64	1+F			015*64	+052			101.29	%			
slope between pH 7 and pH 10		H*64	4+1			000*64	+000			0%				
slope between pH 10 and pH 12		K*64	1+L			000*64	+000			0%				

Byte position	А	В	С	D	E	F	G	Н	1	J	K	L	М	Ν
Byte value	001	byte	byte	002	byte	byte	003	byte	byte	004	byte	byte	013	010
Decode received sequ	uence	e if e.g	.:											
Byte position	А	В	С	D	E	F	G	Н	1	J	K	L	М	Ν
Received bytes	001	000	000	002	015	052	003	000	000	004	000	000	013	010
Slope positions:														
		Prote	ocol			Decc	de			Resu	lt			
slope between pH 2 and pH 4		B*64	I+C			000*64	+000			0%				
slope between pH 4 and pH 7		E*64	1+F			015*64	+052			101.29	%			
slope between pH 7 and pH 10		H*64	4+1			000*64	+000			0%				
slope between pH 10 and pH 12		K*64	4+L			000*64	+000			0%				

Byte position	А	В	С	D	E	F	G	Н	1	J	K	L	М	Ν
Byte value	001	byte	byte	002	byte	byte	003	byte	byte	004	byte	byte	013	010
Decode received sequ	uence	e if e.g	.:											
Byte position	А	В	С	D	E	F	G	Н	1	J	K	L	М	Ν
Received bytes	001	000	000	002	015	052	003	000	000	004	000	000	013	010
Slope positions:														
		Prote	ocol			Decc	de			Resu	lt			
slope between pH 2 and pH 4		B*64	I+C			000*64	+000			0%				
slope between pH 4 and pH 7		E*64	1+F			015*64	+052			101.29	ю			
slope between pH 7 and pH 10		H*64	4+I			000*64	+000			0%				
slope between pH 10 and pH 12		K*64	1+L			000*64	+000			0%				
ADGJ = n/a														

Sentron

12

5.3 ASCII table Contact information

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	0	96	60	•
1	1	[START OF HEADING]	33	21	1	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22		66	42	B	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	1
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	т	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	Y
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	1	123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	1	124	7C	1 I
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	i	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]

More info

Visit www.sentron.nl for more information and support.

14

Address

Sentron Europe B.V. Kamerlingh-Onnesstraat 5 9351 VD Leek The Netherlands info@sentron.nl

Sentron Europe BV, a Welling Company